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We propose an experimental setup based on a single oscillator for studying large networks formed by
identical unidirectionally coupled systems. A chaotic wave form generated by the oscillator is stored in a
computer to adjust the signal according to the desired network configuration to feed it again into the same
oscillator. No previous theoretical knowledge about the oscillator dynamics is needed. To visualize network
synchronization we introduce a network synchronization bifurcation diagram that should prove to be an
effective tool for analysis, design, and optimization of complex networks.
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A very interesting problem today is synchronization of a
large number of dynamical systems connected together in
complex networks �1–4�. From molecular biology to neuro-
science, from condensed-matter physics to the internet, re-
searchers are unraveling the structure of complex networks,
learning how they evolve and function, and exploring how
their architecture affects the collective behavior they display.
One simple way to coordinate the motions of many systems
is to completely synchronize them. It is important to under-
stand how the synchronizability of an oscillators’ network
depends on the interconnection of those oscillators. Much
has been learned by studying this problem theoretically ei-
ther from a local perspective, using linearization to examine
how the network topology affects the stability spectrum for
the synchronous state �5–12� or by focusing on a more global
property of phase space: the basin of attraction for the syn-
chronous state �13�, sadly an exact analytical determination
of synchronization condition can be done only in some
simple cases of coupling configurations �symmetrical or glo-
bal coupling� �14�. The more complex the network structure,
the more sophisticated the numerical techniques necessary
become, making an experimental approach very alluring.

The experimental study of complex networks is an ex-
tremely difficult task. For example, in neuroscience it is usu-
ally restricted to collecting and analyzing experimental data
recorded from different neuron groups �15� and in sociology
it is usually limited by searching the relationship between
individuals �16�. Presently, one difficult problem is to set up
a real physical experiment to study synchronization dynam-
ics of large networks with predesigned configuration. Many
open questions, important in many real-world settings, such
as under what conditions will such a network fall into sync
with all its elements acting as one, how does a network’s
ability to self-synchronize depend on its wiring diagram, and
how to choose the optimal topology for achieving the desired
synchronization state, until now have been approachable
only by numerical simulations. The influence of network to-
pology on the stability of a synchronized chaotic motion is
currently a hot research topic. For example, collective dy-
namics of coupled electronic circuits replicating artificial
neurons, has recently been used to control the movement of a
biomimetic robot �17�. Furthermore, all physical and mental
functionings depend on the establishment and maintenance

of large neuron networks: the human brain contains as many
as 100 billion neurons interconnected in complex networks
�18�. The lack of information we possess on such networks
makes theoretical research very hard, leaving us no other
choice than to undertake the experimental path. Thus, the
practical realization of a complex network with a huge num-
ber of chaotic oscillators might be a step toward the creation
of artificial intelligence and toward better understanding of
the brain functions. The traditional method for constructing
complex networks poses serious technical problems that
have restricted the experimental study to relatively small net-
works.

In this Rapid Communication we propose an experimental
arrangement based on a single oscillator to study large com-
plex networks of unidirectionally interacting units with a de-
sired topology. A chaotic wave form generated by the oscil-
lator passes through an analog-to-digital converter �ADC�
and is stored in a computer. Then, after passing through a
digital-to-analog converter �DAC� and an operational ampli-
fier, the digital signal from the computer, is inserted back
into the same oscillator to provide the coupling between
nodes, which form a network with a predefined configura-
tion. The sketch of the experimental setup is shown in Fig. 1.
It consists of a nonlinear oscillator, an ADC, a personal com-
puter �PC�, a DAC, and an operational amplifier �OA�. First,
the oscillator acts as node 1, then the oscillator’s analog out-
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FIG. 1. Experimental setup for studying complex network syn-
chronization. ADC and DAC are analogical-to-digital and digital-
to-analogical converters, PC is a personal computer, and OA is an
operational amplifier.
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put passes through ADC and is stored in PC, where it is
analyzed with a special program and after attenuation, goes
through DAC, and, according to the coupling strength be-
tween node 1 and node 2, enters back into the oscillator. The
oscillator, then, acts as node 2 and its output is stored again
in PC. This process is repeated successively depending on
the number of nodes in the designed network. If a node has
several links, the computer adjusts the input signal according
to the connectivity matrix. This experimental setup simulates
a network of identical or nearly identical dynamical systems.
Since the wave forms are stored in the computer and then
injected back into the analog system as an external driving
signal and the oscillator is self-oscillating, the node needs
time to be synchronized. To be able to neglect this time, the
stored time series should be much larger than transient time
to achieve pairwise synchronization. In our experiments, the
duration of the recorded wave forms is about 3 orders of
magnitude larger than the synchronization time.

The approach of recording the output of a single system in
a memory to study synchronization between two unidirec-
tionally coupled identical chaotic units was introduced by
Pyragas �19� and experimentally demonstrated with a chaotic
electronic circuit �20�. In the present work we extend this
idea to a network of coupled oscillators. The general equa-
tion of motion of a network build by N unidirectionally lin-
early coupled identical oscillators can be written as

xṅ = F�xn� + ��
m=2

N

cnmPxm, n = 1, . . . ,N, n � m . �1�

Here, xn= �xn
1 , . . . ,xn

d� is the d-dimensional vector in the
phase space of the nth oscillator, F�xn� is a nonlinear vector
function that determines the oscillator dynamics, �� �0,1� is
the coupling strength �for simplicity, we suppose that � is the
same for every link�, cnm is the element of the connectivity
N�N matrix C such that cnm�0, and P is the d�d matrix
that defines the coupled variables. The complete synchronous
state of system �1� is the linear invariant manifold, synchro-
nization manifold D= �x1=x2= ¯ =xn�. The connection of
node n with node m is represented by the matrix C element
in nth row and mth column.

To demonstrate the ability of our experimental method, let
us consider two types of coupling schemes, in-link and out-
link, where all links entering or leaving a node have the same
weight. �i� The connectivity matrix Cinf for the former type,
referred to as informational scheme, has zero column sums
of entries cnm, and the weight wi of link i is proportional to
the total number of links km �m=2,3 , . . . ,N� �N being the
total number of the nodes in the network� entering the node
m so that the weight sum of all links going into node m is
Wm=�i=1

km wi=1, where wi=km
−1. This coupling scheme can

simulate as well, neural, computer, and social networks,
where each node receives a certain amount of information
regardless of whether it comes from a single or several
sources. �ii� The connectivity matrix Ccom for the latter type,
to be called commodity scheme, has zero row-sums of the
entries cnm. Here, the weight wi of link i is proportional to
the total number of output links ln �n=1, . . . ,N� of node n
so that the weight sum of all links leaving the node n is

Wn
�=�i=1

ln wi=1, i.e., wi= ln
−1. Such a scheme can describe

commodities exchanges between factories or transportation
companies �airports, bus and train stations, etc.�. Each unit
generates products to be distributed evenly among other
units depending on the number of output connections.

For the simplest case, when the oscillators are coupled by
only one variable �P=1�, say y, the last term in Eq. �1� can
be replaced by ��km

−1�n=1
km yn−ym� and ���n=1

km ln
−1yn−ym� for the

informational and commodity schemes, respectively. The
networks under consideration are not node balanced, in the
sense that the input and output weight sums are not equal.
Nevertheless, these networks are very common in practice
and their correct operation depends on how well they are
synchronized. We are now interested in answering the fol-
lowing questions: what are the differences between synchro-
nization properties of the two network schemes? In particu-
lar, what should the optimal coupling be for each network
type to obtain the best synchronization between any chosen
pair of nodes? Does the optimal coupling depend on network
configuration? In order to give some answers, we experimen-
tally study synchronization between every pair of nodes and
its dependence on the coupling strength in both network
types.

To do so, we use a piecewise linear Rössler-type elec-
tronic circuit, the analog version of the following model
�21,22�:

dxn

d�
= − �xn − zn − �yn,

dyn

d�
= xn + �yn,

dzn

d�
= g�xn� − zn, �2�

where xn, yn, and zn are the oscillator state variables in node
n �n=1,2 , . . . ,N�, g�xn�= , � 0,

��xn−3�
if xn	3
if xn�3 � is the piecewise

linear function, and �= t�104 s �t being the time�. The os-
cillator generates chaotic wave forms when �=0.05, �=0.5,
�=0.266, and �=15. The output variable yn of node n is
coupled with ym of node m �m=2,3 , . . . ,N ,m�n� according
to a networks’ configuration scheme and the corresponding
connectivity matrix. For better illustration, we consider first,
a relatively small network formed by only six identical uni-
directionally coupled chaotic oscillators. Figure 2 shows the
network configuration indicating links’ weights for the infor-
mational �Fig. 2�a�� and commodity connections �Fig. 2�b��.
The corresponding connectivity matrices are

Cinf =�
0 1 0 1/3 0 1/3
0 − 1 1 1/3 1/2 0

0 0 − 1 1/3 0 1/3
0 0 0 − 1 1/2 0

0 0 0 0 − 1 1/3
0 0 0 0 0 − 1

	 �3�

and
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Ccom =�
− 1 1/3 0 1/3 0 1/3
0 − 1 1/3 1/3 1/3 0

0 0 − 1 1/2 0 1/2
0 0 0 − 1 1 0

0 0 0 0 − 1 1

0 0 0 0 0 0

	 . �3�

Note that the diagonal elements c11=0 in Cinf and c66=0 in
Ccom reflect unidirectionality in coupling, i.e., no entrances
into node 1 and no outputs from node 6.

Synchronization of complex networks can be quantita-
tively described by the average synchronization error 
e� be-
tween any pair of oscillators in the network, the cross corre-
lation �K� of their oscillations, and the power spectral density
S�f0 /2� at the subharmonic of the fundamental frequency f0.

e� is an important measure in complete synchronization and
can be calculated directly from time series, while K and S
portray partial synchronization, such as phase or antiphase,
and period-doubling synchronization, respectively. Figure 3
presents 
e�= 
yn−ym� between nodes 1 and m=2, . . . ,6 for
the networks of 6 as a function of � for the informational
�Figs. 3�a�� and commodity �Fig. 3�b�� schemes. These de-
pendences are not monotonous and their behaviors are deter-
mined by a particular type of synchronization. The maxima
in 
e� appear either due to antiphase synchronization or in-
termittent antiphase synchronization, whereas the minima
correspond to phase synchronization. To our knowledge, no
experimental evidence for network phase synchronization
has been reported although it has already been predicted
theoretically �23�. Numerical simulations of Eq. �2� yield
good agreement with the experimental results. The advan-

tages of the experimental approach over numerical simula-
tions are that typically it is much faster to generate long
chaotic wave forms with an analog system than to obtain
them numerically from complex nonlinear models and that
the experiments can be performed with a system which
model and parameters are not exactly known �e.g., lasers and
neurons�. The interactions between the network nodes in the
experiment are caused by real physical processes which lead
to synchronization; the computer only memorizes the output
wave forms and models the network configuration.

For larger networks, the calculation time difference be-
tween the experimental and numerical methods goes as the
numbers of nodes and links, making our approach more
practical. The experiments with large networks reveal the
main difference between informational and commodity
schemes: for the informational type, the optimal coupling
�when 
e� is a minimum� for any pair of oscillators always
occurs at �opt=1 and is independent of the network configu-
ration, while for the commodity type, �opt is different for
each pair of nodes and does indeed depend on the configu-
ration. Note that our setup is time independent; for example,
if node 1 is connected with nodes 2 and 1000, the same wave
form is used for driving both nodes, and both after transient
time �dependent on the initial conditions for each oscillator�
may be simultaneously synchronized with node 1.

To visualize the synchronization state of a whole complex
network, we construct a very helpful tool, the network syn-
chronization bifurcation diagram �NSBD�. A particular color
�red, green, and blue� is assigned to each property and each
line of pixels represents the corresponding oscillator syn-
chronization state with respect to the reference one. We
choose red for 
e�, green for K, and blue for S, and we take
� as a control parameter to obtain the NSBD shown in Fig. 4.
The gray value for each color is in the range �0, 255� indi-
cating the corresponding minimum and maximum values.
Complete synchronization yields the green color because

e�=0, K=1, and S=0, an asynchronous state results in red
because K�0, S=0 and 
e� takes a big value, while period-
doubling synchronization �22� manifests itself with the blue
color. Figure 4 shows NSBDs for two 1000-oscillator ran-
dom networks, having the same adjacency matrix but
coupled either with informational �Fig. 4�a�� or commodity
schemes �Fig. 4�b��. Similar NSBDs can be constructed for
any other node n�1, in this case the number of lines in the
image will be equal to N−n. The spatial-pattern formation in
NSBD gives significant information on the evolution of the
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FIG. 3. �Color online� Average
synchronization error between
node 1 and other nodes for net-
works of six Rössler oscillators
coupled with �a� informational
and �b� commodity schemes, as a
function of coupling strength. The
node m with which the synchroni-
zation error is measured is indi-
cated in the left down corner.
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FIG. 2. �a� Informational and �b� commodity coupling schemes
for a six-node network.
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whole network as the coupling changes: yellow regions in-
dicate anti-synchronization, while blue regions tell us of a
period-doubling regime; an abrupt transformation of the
color means a sudden change in synchronization type and
may well be a bifurcation. Implicitly is the previous work of
making a synchronization image that did show the state of
synchronization of the whole network at a fixed coupling
parameter. In this N�N-pixel image, each pixel �n ,m� color
represents the synchronization state between nodes n and m;
one has to be aware that the green diagonal has no meaning.

In conclusion, we have proposed an experimental method
to study unidirectional network synchronization using a
single oscillator that is a complete analog real physical sys-
tem �it could also have been biological, chemical, or medi-
cal�. The Rössler oscillator was chosen only for a better dem-
onstration and a clearer idea of how this experimental
arrangement works. Although our approach does not allow
the study of synchronization in real time, both the generation

and the interaction of the oscillator wave forms happen out-
side the computer, and therefore all physical processes are
completely analog, so that no any previous knowledge about
the theoretical model is required. This is the great strength of
the method, the oscillator could actually be a black box
which generates any wave form. This setup enabled us to
highlight the difference between an informational and a com-
modity coupling schemes. The visualization of network syn-
chronization introduced in this work is not only illustrative
but is in fact an effective tool for analysis, design, and opti-
mization of complex networks. Nowadays, the experimental
approach proposed opens a clear possibility for studying syn-
chronization of large complex networks of a desired configu-
ration. The comparison of our approach with multiples de-
layed feedback methods might be of interest for future
investigation.
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(a) FIG. 4. �Color online� Syn-
chronization bifurcation diagrams
of a 1000-oscillator random net-
work with maximum 100 links per
node, coupled with �a� informa-
tional and �b� commodity
schemes. The pixels’ colors dis-
play synchronization states of 999
oscillators m=2, . . . ,1000 with re-
spect to oscillator n=1 for 100
coupling strengths �=0.01, . . . ,1.
The red �gray�, green �light gray�,
and blue �dark gray� colors show,
respectively, the contributions of

e�, K, and S.
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